Capra, leapfrog and other related operations on maps

Mircea V. Diudea

Faculty of Chemistry and Chemical Engineering Babes-Bolyai University 400084 Cluj, ROMANIA diudea@chem.ubbcluj.ro

Contents

- Basic operations in a map
- Composite operations
- Capra operation
- Lattices with negative curvature
- π-Electronic implications
- References

Relations in a map

* A map *M* is a combinatorial representation of a closed surface.¹ The graph associated to the map is called regular if all its vertices have the same degree.

* Basic relations in M:

 $\sum dv_d = 2e$ $\sum sf_s = 2e$ $v - e + f = \chi(M) = 2(1 - g) \quad Euler^2$

T. Pisanski, and M. Randić, in *Geometry at Work*, M. A. A. Notes, **2000**, *53*, 174-194. L. Euler, *Comment. Acad. Sci. I. Petropolitanae*, **1736**, *8*, 128-140

Basic operations in a map

Stellation¹ *St* (capping, triangulation): add a new vertex in the center of a face and connect it with each boundary vertex.

St (M):
$$V = V_0 + f_0$$

 $e = 3e_0$
 $f = 2e_0$

1. T. Pisanski, and M. Randić, in Geometry at Work, M. A. A. Notes, 2000, 53, 174-194.

Stellation St

1. P. W. Fowler and D. E. Manolopolous, *An atlas of fullerenes*, Oxford University Press, Oxford, U.K., 1995.

Basic operations in a map

Dual¹Du (Poincaré dual):

locate a point in the center of each face and join two such points if their corresponding faces share a common edge.

Du(Du(M)) = M

<i>Du</i> (M):	$V = f_0$
	$e = e_0$
	$f = V_0$

1. T. Pisanski, and M. Randić, in *Geometry at Work*, M. A. A. Notes, **2000**, *53*, 174-194.

Dual Du

C₄₀:39¹ (D_{5d})

1. P. W. Fowler and D. E. Manolopolous, *An atlas of fullerenes*, Oxford University Press, Oxford, U.K., 1995.

Basic operations in a map

Medial¹Me:

put the new vertices as the midpoints of the original edges. Join two vertices if and only if the original edges span an angle.

Me(M) = Me(Du(M)) (a 4-valent graph)

$$Me(M): \qquad v = e_0$$

$$e = 2e_0$$

$$f = f_0 + v_0$$

1. T. Pisanski, and M. Randić, in Geometry at Work, M. A. A. Notes, 2000, 53, 174-194.

C₅₀:271¹ (C_s)

Me (C₅₀:271)

1. P. W. Fowler and D. E. Manolopolous, *An atlas of fullerenes*, Oxford University Press, Oxford, U.K., 1995.

Basic operations in a map

Truncation¹ Tr:

cut of the neighborhood of each vertex by a plane close to the vertex, such that it intersects each edge incident to the vertex.

Truncation is similar to Me (M)

Tr (M):

$$v = d_0 v_0$$

$$e = 3e_0$$

$$f = f_0 + v_0$$

1. T. Pisanski, and M. Randić, in Geometry at Work, M. A. A. Notes, 2000, 53, 174-194.

Truncation Tr

Icosahedron (I_h)

Tr (Icosahedron) = C₆₀ (PC)

1. P. W. Fowler and D. E. Manolopolous, *An atlas of fullerenes*, Oxford University Press, Oxford, U.K., 1995.

Composite operations

Le(M) = Du(St(M)) = Tr(Du(M))

<i>Le</i> (<i>M</i>):	$V = a_0 V_0$
	$e = 3e_0$
	$f = f_0 + V_0$

It rotates the parent faces by π/s

1. P. W. Fowler, Phys. Lett., 1986, 131, 444.

Le (Cube)

Le (*Le* (Cube))

C₃₀:1 (*C_s*)

$Le(C_{30}:1) = C_{90}:1(C_s)$

Leapfrog Le - electronic implications

In simple Hückel theory,¹ the energy of the /th
 π-molecular orbital is calculated on the grounds of A(G)

 $E_i = \alpha + \beta \lambda_i$

 $E_{\rm HOMO} - E_{\rm LUMO} = gap$

 Study of eigenvalue spectra provided some rules of thumb for the stability of fullerenes.

1. E. Hückel, Z. Phys., 1931, 70, 204.

π-Electronic Structure

	Relation	GAP	shell	symbol
1	$\lambda_{N/2} > 0 \ge \lambda_{N/2+1}$	≠ 0	properly closed	РС
2	$\lambda_{N/2} > \lambda_{N/2+1} > 0$	≠ 0	pseudo closed	PSC
3	$0 \geq \lambda_{N/2} > \lambda_{N/2+1}$	≠ 0	meta closed	MC
4	$\lambda_{N/2} = \lambda_{N/2+1}$	0	open	OP

Leapfrog Le - electronic implications

• Leapfrog rule¹ LER: (PC) $N_{Le} = 60 + 6m$; $(m \neq 1)$ = 3(20 + 2m)In a-tubulenes $C_{12k,k}$ -v[2k,n]-[6]; (PC) $N_{Le} = 12k + 2k \cdot 3m$ m = 0, 1, 2, ..., (k = 4 to 7)

1. P. W. Fowler and J. I. Steer, J. Chem. Soc., Chem. Commun., 1987, 1403-1405.

Composite operations Leapfrog

Composite operations Leapfrog: bounding polygon has $s = 2 d_0$

Leapfrog of a 4-valent net

Leapfrog of a 4-valent net

$TUHRC_{4}[8,4] = Me(TUC_{4}[8,4])$

Le (TUHRC₄[8,4])=TUVSC₄C₈[8,12]

TUZ[8,4]

<u>∠</u>e (TUZ[8,4]) = TUA[8,9]

Schlegel version¹ of *Le*(*M*)

1. J. R. Dias, From benzenoid hydrocarbons to fullerene carbons. *MATCH Commun. Math. Chem. Comput.* 1996, *33*, 57-85.

Leapfrog of planar benzenoids

Composite operations

Dual of Stellation of Medial = $DSM(M)^{1}$ DSM(M) = DU(St(Me(M))) = Le(Me(M))) $DSM(M): v = 2d_{0}v_{0} = 4e_{0} (d_{0} = 4; s_{0} = 4)$ $e = 6e_{0}$ $f = f_{0} + e_{0} + v_{0}$

It involves two rotations by $\pi/s = no$ rotation

1. M. V. Diudea, P. E. John, A. Graovac, M. Primorac, and T. Pisanski, *Croat. Chem. Acta*, 2003, *76*, 153-159.

Dual of Stellation of Medial

Composite operations

Quadrupling Q(M) Chamfering

Q(M) = Du(Str(Me(M)))

 $Q(M): \qquad v = (d_0+1)v_0$ $e = 4e_0$ $f = f_0 + e_0$

It involves two rotations by $\pi/s = no$ rotation

1. A. Deza, M. Deza and V. P. Grishukhin, *Discrete Math.*, 1998, *192*, 41-80.

Quadrupling Q(M)

M. V. Diudea, P. E. John, A. Graovac, M. Primorac, and T. Pisanski, *Croat. Chem. Acta*, 2003, *76*, 153-159.

Quadrupling Q(M)

Q(Cube)=Chamfering¹

1. M. Goldberg, *Tôhoku Math. J.*, 1934, *40*, 226-236

Quadrupling Q(M)

1. P. W. Fowler, J. E. Cremona, and J. I. Steer, Theor. Chim. Acta, 1988, 73, 1

Quadrupling of planar benzenoids

Capra Ca (M)

Ca (M)¹ – Romanian Leapfrog

$$Ca(M) = Trr(Pe(E2(M)))$$

Ca(M): $v = (2d_0+1)v_0 = v_0 + 2e_0 + s_0f_0$ $e = 7e_0 = 3e_0 + 2s_0f_0$ $f = (s_0+1)f_0$

It involves rotation by $\pi/2s$ of the parent faces

1. M. V. Diudea, Studia Univ. Babes-Bolyai, 2003, 48, 3-21

Capra Ca (M)

 $C_{a,i}(M)$; Iterative operation

$$v_n = 8v_n - 1 - 7v_n - 2; n \ge 2$$

$$v_n = 7^n \cdot v_0; \ d_0 = 3$$

 $e_n = 7^n \cdot e_0 = 7^n \cdot 3v_0/2$
 $f_n = f_0 + (7^n - 1) \cdot v_0/2$

• Goldberg¹ relation: $m = (a^2 + ab + b^2); a \ge b; a + b > 0$ Le: (1, 1); m = 3 Q: (2, 0); m = 4Ca: (2, 1); m = 7

1. M. Goldberg, *Tohoku Math. J.*, 1937, *43*, 104-108.

E2(M)

Pe(E2(M))

Trr(Pe(E2(M)))

M. V. Diudea, Studia Univ. Babes-Bolyai, 2003, 48, 3-21

E2 (Cube)

Pe (E2 (Cube))

Trr(P=(E2(Cube)))

Ca (Cube) – Schlegel project.

Capra Ca (M)

C_{22} (Dodecahedron) = C_{140}

C_{Ξ} (Icosahedron) = C_{132}

A "racemic" pair of Ca -transformed TUZ[8,3]

Two successive *Ca-operations*

<u>CaS</u>(CaS (Cube))

<u>CaR</u> (CaS (Cube))

Capra Ca (M) – Negative curvature lattices

Negative and Positive Curvature Lattices

$Ca(C_{20})_{[7]}; N = 200$

C₂₆₀(*I*_h) Fowler¹

1. A. Dress and G. Brinkmann, MATCH- Commun. Math. Comput. Chem., 1996, 33, 87-100.

Positive and Negative Curvature Lattices

POAV – Strain Energy

In the POAV1 theory^{1,2} the π -orbital axis vector makes equal angles to the three σ -bonds of the sp² carbon:

 $\theta_{\rho} = \theta_{\sigma\pi} - 90^{\circ}$ $SE = 200(\theta_{\rho})^{2}$ $120 - (1/3) \Sigma \theta_{ij}$

pyramidalization angle strain energy deviation to planarity

R.C. Haddon, J. Am. Chem. Soc., 112, 3385 (1990).
 R.C. Haddon, J. Phys. Chem. A, 105, 4164 (2001).

POAV1 – Strain Energy

	Angle (deg)		Deviation	$\theta_{ ho}$	SE					
1	2	3	(deg)	(deg)	(kcal/mol)					
C _{3.6.6} Ca (Ca (Tetrahedron))										
108.017	108.078	60.006	27.967	31.692	61.189					
108.090	108.026	60.000	27.961	31.687	61.171					
108.071	108.017	59.995	27.972	31.695	61.202					
average			27.967	31.691	61.188					
C _{7,6,6}	<i>Ca</i> (<i>Ca</i> (Tetrahe	dron) _[7])								
117.475	125.063	114.694	0.923	5.529	1.862					
118.227	117.678	120.442	1.218	6.378	2.478					
114.883	117.99	126.795	0.111	1.906	0.221					
114.105	116.541	129.236	0.039	1.133	0.078					
117.824	117.818	122.078	0.760	5.027	1.539					
116.736	119.16	123.226	0.293	3.112	0.590					
114.422	114.902	130.022	0.218	2.664	0.432					
average			0.509	3.678	1.029					

Capra of planar benzenoids

TUAC₆[8,16]V1,2

TUZC₆[16,8]H1,2

RC₄C₈[16,8]

SC₄C₈[16,8]

SC₅C₇[16,8]

HC₅C₇[16,8]

VC₅C₇[16,8]

VAC₅C₇[16,8]

HAC₅C₇[16,8]

VAC₅C₆C₇[16,8]

HAC₅C₆C₇[16,8]

VARIOUS TORI

A C₆₀ –like toroidal object

HAC₅C₆C₇[12,120]; N=1440 HAC₅C₇[12,120]; N=1440

Capra of VARIOUS NANOTUBES

Ca (ZC₆[16,8]); N=832

Ca (AC₆[8,16]); N=832

Capra of VARIOUS NANOTUBES

Ca (HAC₅C₆C₇[16,8]); N=824 Ca (HAC₅C₇[16,8]); N=824

Le (HAC₅C₆C₇[16,8]); N=328 *Q* (HAC₅C₇[16,8]); N=440

Spectral implications of Ca operation

 Ca operation, applied to a finite structure, leaves unchanged its π-electronic shells. There exist exceptions, the most notably being the transformed Ca (Tuz/a[c,n]) of nanotubes, which all have PC shell disregarding the character of their parent shell.

Spectral data of open nanotubes Tuz/a[*c*,*n*] and tori Z/A[*c*,*n*] and their *Ca* -transforms

	STRUCTURE	N	HOMO _{.1}	НОМО	LUMO	LUMO ₊₁	Gap	Shell
1	Tuz[8,4]	32	0.705	0	0	-0.705	0	OP
2	<i>Ca</i> (Tuz [8,4])	192	0.273	0.017	-0.017	-0.273	0.034	РС
3	Tuz[10,4]	40	0.095	0.095	-0.095	-0.095	0.190	PC
4	<i>Ca</i> (Tuz [10,4])	240	0.064	0.064	-0.064	-0.064	0.129	РС
5	Tua[4,8]	32	0.532	0	0	-0.532	0	OP
6	<i>Ca</i> (Tua [4,8])	192	0.265	0.024	-0.024	-0.265	0.048	РС
7	Tua[4,10]	40	0.310	0.169	-0.169	-0.310	0.338	PC
8	<i>Ca</i> (Tua[4,10])	248	0.132	0.095	-0.095	-0.132	0.189	РС
9	Z[8,10]	80	0.414	0.414	-0.414	-0.414	0.828	РС
10	<i>Ca</i> (Z [8 , 10])	560	0.169	0.169	-0.169	-0.169	0.337	РС
11	A[8,12]	96	0	0	0	0	0	М
12	<i>Ca</i> (A[8,12])	672	0	0	0	0	0	М

Spectral data of various types of open nanotubes

	TUBE	номо	LUMO	GAP	\mathbf{E}_{π}	X +	x0	Х-	SHELL
1	TUH[16,8]	0	0	0	1.527	63	2	63	ОР
2	HC ₅ C ₇ [16,8]	0.139	0.139	0	1.490	67	1	60	ОР
3	HAC ₅ C ₇ [16,8]	0.191	0	0.191	1.487	64	3	61	PSC
4	HAC ₅ C ₆ C ₇ [16,8]	0	0	0	1.517	63	2	63	ОР
5	RC ₄ C ₈ [16,8]	0	0	0	1.425	62	4	62	М
6	SC ₄ C ₈ [16,8]	0.063	-0.063	0.126	1.446	64	0	64	РС
7	SC ₅ C ₇ [16,8]	0.134	0.068	0.066	1.497	65	1	62	PSC
8	TUV[8,16]	0.109	-0.109	0.217	1.537	64	0	64	PC
9	VC ₅ C ₇ [16,8]	0.244	0.153	0.091	1.474	67	1	60	PSC
10	VAC ₅ C ₇ [16,8]	0.147	0.128	0.019	1.477	65	1	62	PSC
11	VAC ₅ C ₆ C ₇ [16,8]	0.174	0.138	0.036	1.495	65	0	63	PSC

Spectral data of the *Le* transforms of various types of open nanotubes

	TUBE	номо	LUMO	GAP	Eπ	X +	x ₀	х-	SHELL
1	TUH[16,8] <i>Le</i>	0.081	-0.081	0.163	1.548	168	0	168	PC
2	HC ₅ C ₇ [16,8] <u>L</u> e	0.211	0.203	0.009	1.519	168	0	160	PSC
3	HAC ₅ C ₇ [16,8] <i>Le</i>	0.203	0.158	0.045	1.519	168	0	160	PSC
4	HAC ₅ C ₆ C ₇ [16,8] <u>L</u> e	0.183	0.170	0.014	1.530	167	0	161	PSC
5	RC ₄ C ₈ [16,8] <u>L</u> e	0	0	0	1.464	152	16	152	М
6	SC ₄ C ₈ [16,8] <i>Le</i>	0	0	0	1.464	152	16	152	Μ
7	SC ₅ C ₇ [16,8] <u>L</u> e	0.077	0.027	0.050	1.531	169	0	167	PSC
8	TUV[8,16] <u>L</u> e	0.108	-0.108	0.217	1.547	168	0	168	РС
9	VC ₅ C ₇ [16,8] <u>L</u> e	0.256	0.201	0.055	1.507	157	0	151	PSC
10	VAC ₅ C ₇ [16,8] Le	0.203	0.124	0.079	1.506	156	0	152	PSC
11	VAC ₅ C ₆ C ₇ [16,8] <i>Ly</i>	0.239	0.147	0.092	1.514	156	0	152	PSC

Spectral data of the *Q* transforms of various types of open nanotubes

	TUBE	номо	LUMO	GAP	Ε _π	X +	x0	Х-	SHELL
1	TUH[16,8] <mark>/</mark>	0	0	0	1.547	223	2	223	ОР
2	HC ₅ C ₇ [16,8] <u>0</u>	0.115	0.115	0	1.528	227	0	213	ОР
3	HAC ₅ C ₇ [16,8] <u>/</u>	0.099	0.099	0	1.530	223	1	216	ОР
4	HAC ₅ C ₆ C ₇ [16,8] <u>0</u>	0.003	0.003	0	1.538	221	0	219	OP
5	RC ₄ C ₈ [16,8] <mark>2</mark>	0	0	0	1.486	213	6	213	Μ
6	SC ₄ C ₈ [16,8] <u>0</u>	0	0	0	1.505	221	6	221	Μ
7	SC ₅ C ₇ [16,8] <mark>0</mark>	0.055	0	0.055	1.536	224	1	223	PSC
8	TUV[8,16] <mark>/</mark>	0.078	-0.078	0.156	1.553	224	0	224	РС
9	VC ₅ C ₇ [16,8] <u>0</u>	0.082	0.082	0	1.517	208	1	203	ОР
10	VAC ₅ C ₇ [16,8] <u>0</u>	0.130	0.130	0	1.520	208	0	204	ОР
11	VAC ₅ C ₆ C ₇ [16,8] <u>0</u>	0.078	0.078	0	1.527	208	0	204	ОР

Spectral data of the *Ca* transforms of various types of open nanotubes

	TUBE	номо	LUMO	GAP	\mathbf{E}_{π}	X +	x0	Х-	SHELL
1	TUH[16,8]Ca	0	0	0	1.557	416	0	416	OP/PC
2	HC ₅ C ₇ [16,8] <i>Ca</i>	-0.006	-0.016	0.011	1.547	411	0	413	MC
3	HAC ₅ C ₇ [16,8] <i>Ca</i>	0.075	0.075	0	1.547	416	0	408	ОР
4	HAC ₅ C ₆ C ₇ [16,8] <i>Ca</i>	0.077	0.071	0.007	1.551	416	0	408	PSC
5	RC4C8[16,8]Ca	0.007	-0.007	0.014	1.528	408	0	408	PC
6	SC ₄ C ₈ [16,8] <i>Ca</i>	0.009	-0.009	0.017	1.536	416	0	416	PC
7	SC ₅ C ₇ [16,8] <i>Ca</i>	0.100	-0.012	0.113	1.550	416	0	416	PC
8	TUV[8,16] <mark>Ca</mark>	0.057	-0.057	0.114	1.558	416	0	416	РС
9	VC ₅ C ₇ [16,8]Ca	0.092	0.092	0	1.539	400	0	396	OP
10	VAC ₅ C ₇ [16,8] <i>Ca</i>	0.082	0.079	0.003	1.539	400	0	396	PSC
11	VAC ₅ C ₆ C ₇ [16,8] <i>Ca</i>	0.017	0.017	0	1.543	399	0	397	ОР

Spectral data of the Platonic polyhedra and their *Ca* [7] -transforms

	Structure	HOMO.1	HOMO	LUMO	LUMO ₊₁	Gap	Shell	Ex. e
1	M = Tetrahedron	3	-1	-1	-1	0	OP	
	$Ca(M)_{[7]}$	0.154	0.154	0.154	-0.614	0	OP	
	$CaS(CaS(M)_{[7]})$	-0.005	-0.005	-0.005	-0.306	0	OP	4
	$CaR(CaS(M)_{[7]})$	-0.010	-0.010	-0.010	-0.325	0	OP	4
2	M = Cube	1	1	-1	-1	2	PC	
	$Ca(M)_{[7]}$	0	0	0	-0.188	0	OP	
	$CaS(CaS(M)_{[7]})$	-0.010	-0.010	-0.127	-0.127	0.117	MC	6
	$CaR(CaS(M)_{[7]})$	-0.004	-0.004	-0.141	-0.141	0.137	MC	6
3	<i>M</i> = Dodecahedron	1	0	0	0	0	OP	
	$Ca(M)_{[7]}$	0	0	0	-0.165	0	OP	
	$CaS(CaS(M)_{[7]})$	-0.069	-0.069	-0.069	-0.131	0	OP	6
	$CaR(CaS(M)_{[7]})$	-0.070	-0.070	-0.070	-0.138	0	OP	6
4	M = Octahedron	0	0	0	-2	0	OP	
	$Ca(M)_{[7]}$	0.222	0	0	0	0	OP	
	$CaS(CaS(M)_{[7]})$	0.008	-0.044	-0.044	-0.044	0	OP	2
	$CaR(CaS(M)_{[7]})$	0.021	-0.058	-0.058	-0.058	0	OP	2
5	M = Icosahedron	-1	-1	-1	-1	0	OP	
	$Ca(M)_{[7]}$	0.101	0.101	0.101	0.101	0	OP	
	$CaS(CaS(M)_{[7]})$	-0.022	-0.022	-0.022	-0.022	0	OP	6
	$CaR(CaS(M)_{[7]})$	-0.029	-0.029	-0.029	-0.029	0	OP	6

 Negative curvature lattices
 GAUSS-BONET Theorem - relates the geometric curvature to the topology

 $\int_{S} \kappa dA = 2\pi \chi(S)$

Euler characteristic

 $\chi(S) = v - e + f$ v - e + f = 2(1 - g) $g = (e_0 - v_0 + 2)/2 = f_0/2$

O. Bonnet, C. R. Acad. Sci. Paris, 1853, 37, 529-532

Negative curvature lattices

• The genus of $Ca(M)_{[7]}$ objects is calculable as:

0

 $\chi(\mathcal{M})_{[7]} = \nu_{1[7]} - e_{1[7]} + f_{1[7]} = 2(1 - g) = \nu_0 - e_0$ $g = (e_0 - \nu_0 + 2)/2 = f_0/2$

(spherical character of the parent polyhedron involves: v₀ - e₀ + f₀ = 2)
Lattices with g > 1 will have negative χ(M)_[7] and consequently negative curvature.

For the five Platonic solids, the genus of the corresponding Ca (M)_[7] is:
 2 (Tetrahedron); 3 (Cube); 4 (Octahedron); 6 (Dodecahedron) and
 10 (Icosahedron).

Negative curvature lattices

Diudea, M. V., Capra-a leapfrog related operation on maps, *Studia Univ. "Babes-Bolyai"*, **2003**, *48* (2), 3-22

Negative curvature lattices

O1CaM(7)

C-Ca1-7-Ca2 = M; N = 464

UM; N = 176LUMj

Nagy, Cs. L., Diudea, M. V., Carbon allotropes with negative curvature, *Studia Univ. "Babes-Bolyai"*, **2003**, *48* (2), 35-46

CUM; N = 176

LCUMj

UCUM; N = 104

LUCUMj

CUCUM; N = 104

LCUCUMj

SUM; N = 152

LSUMi

SCUCUM; N = **80**

LSCUCUMi

PLSUM; N = 200

PLSCUCUM; N = 104

SCUM; N = 152

LSCUMi

PLSCUM; N = 224

02CaM(8)

PLSCUMO=O1QM; N = 56 LPLSCUMOj DYCK GRAPH

DYCK TESSELLATION (8,3) 12 + 6 OCTAGONS

KLEIN TESSELLATION (7,3) 24 HEPTAGONS + 6 OCTAGONS

UO1LEM; N = 72

CUO1LEM; N = 42

LUO1LEMI

LCUO1LEMj

TUM; N = 88

LTUM

SOFTWARE

 TOPOCLUJ 2.0 - Calculations in MOLECULAR TOPOLOGY
M. V. Diudea, O. Ursu and Cs. L. Nagy, B-B Univ. 2002

CageVersatile 1.1
Operations on maps
M. Stefu and M. V. Diudea, B-B Univ. 2003

Peanut dimers; topology¹

1. Cs. L. Nagy, M. Stefu; M. V. Diudea and A. Dress, A. Mueler, C₇₀ Dimers - energetics and topology, *Croat. Chem. Acta*, 2003 (accepted).

Peanut dimers; topology

Me(*C*₁₄₀); edge orbits: 9{10}; 6{20}

$Du(C_{140})$; face orbits: **[5]{2}; 2{10}; [6] 4{10}; [7] {10}**

Conclusions

- A new operation on maps, called *Capra Ca*, was proposed and discussed in comparison with the well-known Leapfrog *Le* and Quadrupling *Q* operations.
- Ca-operation insulates each parent face by its own hexagons (*i.e.*, coronene-like substructures), in contrast to Le and Q. The transformed constitutive parameters were given.
- The utility of this operation is in building of large cages that preserve the symmetry and spectral properties of the parent structures and in extremely facile access to several constructions with negative curvature.
- Clearly, many other authors have used such a transformation but no paper, in our best knowledge, has been devoted so far.

- 1. Diudea, M. V.; Graovac, A.; Generation and graph-theoretical properties of C4-tori. *MATCH Commun. Math. Comput. Chem.*, 2001, 44, 93-102
- 2. Diudea, M. V.; Silaghi-Dumitrescu, I.; Parv, B. Toranes versus torenes. MATCH - Commun. Math. Comput. Chem. , 2001, 44, 117-133
- B. Diudea, M. V.; John, P. E. Covering polyhedral tori. *MATCH Commun. Math. Comput. Chem.*, 2001, 44, 103-116
- Diudea, M. V.; Kirby, E. C. The energetic stability of tori and ssingle-wall tubes. *Fullerene Sci. Technol.* 2001, *9*, 445-465.
- 5. Diudea, M. V. Graphenes from 4-valent tori. *Bull. Chem. Soc. Japan*, 2002, *75*, 487-492.

6. Diudea, M. V.; Silaghi-Dumitrescu, I.; Pârv, Toroidal fullerenes. *Ann. West Univ.Timisoara*, 2001, *10*, 21-40

- 7. Diudea, M. V.; Silaghi-Dumitrescu, I.; Pârv, B. Toroidal fullerenes from square tiled tori. *Internet Electronic Journal of Molecular Design*. 2002, *1*, 10-22.
- 8. Diudea, M. V. Hosoya polynomial in tori. *MATCH Commun. Math. Comput. Chem.*, 2002, *45*, 109-122.
- 9. Diudea, M. V. Phenylenic and naphthylenic tori. *Fullerenes, Nanotubes Carbon Nanostruct.*, 2002, *10*, 273-292.
- 10. Diudea, M. V.; Parv, B.; Kirby, E. C. Azulenic tori. *Commun. Math. Comput. Chem*. (*MATCH*), 2003, *47*, 53-70.
- 11. Diudea M. V., Periodic 4,7 cages. *Bul. Stiint. Univ. Baia Mare Ser. B*, 2002, *18*, 31-38

- 12. Diudea, M. V. Topology of naphthylenic tori. *PCCP*, 2002, *4*, 4740-4746.
- 13. John, E. P.; Diudea, M. V., Wiener index of zig-zag polyhex nanotubes, *Croat. Chem. Acta*, 2003, (in press).
- 14. Diudea, M. V.; Stefu, M.; Parv, B.; John, P. J., Wiener index of armchair polyhex nanotubes *Croat. Chem. Acta*, 2003, (in press).
- **15.** Diudea, M. V.; Fowler, P. W. π -Electronic structure of polyhex tori originating in square tori. *PCCP*, 2003 (submitted).
- 16. Diudea, M. V.; Parv, B.; John, E. P.; Ursu, O.; Graovac, A., Distance counting in tori. *MATCH Commun. Math. Comput. Chem.*, 2003, 49, 23-36
- 17. Diudea, M. V.; Nagy, C. L.; Ursu, O.; Balaban, T. S., C60 dimers revisited. *Fullerenes, Nanotubes Carbon Nanostruct.*, 2003, 11, 245 -255.

- 18. Nagy, C. L.; Stefu, M.; Diudea, M. V.; Dress, A., Muller, A., Structure and energetics of C70 dimers, *Croat. Chem. Acta*, 2003, (accepted).
- 19. Diudea, M. V.; Balaban, T. S.; Kirby, E.C.; Graovac, A. Energetics and topology of polyhex nanotubes. *Phys. Chem., Chem.Phys.*, 2003, *5*, 4210 – 4214.
- 20. Diudea, M.V., Periodic fulleroids, *Int. J. Nanostruct.*, 2003, (in press).
- 21. Diudea, M.V., Silaghi-Dumitrescu, I.; Graovac, A. Periodic cages. *Croat. Chem. Acta*, 2003, (submitted).
- 22. Diudea, M.V.; Parv, B.; Ursu, O., Hex tori from square tori, Studia Univ. "Babes-Bolyai", 2003, 48, 3-10.
- 23. Diudea, M.V.; Ursu, O., Parv, B., Hex tubes from square tubes, *Studia Univ. "Babes-Bolyai"*, 2003, *48*, 11-20.

- 24. Diudea, M.V.; Silaghi-Dumitrescu, I., Small fulleroids, *Studia Univ.* "*Babes-Bolyai*", 2003, *48*, 21-30.
- 25. Stefu, M.; Diudea, M.V.; Wiener index of C4C8 nanotubes. MATCH - Commun. Math. Comput. Chem., 2003 (in press)
- 26. M.V. Diudea, The zig-zag cylinder rule, *Studia Univ. "Babes-Bolyai"*, 2003, *48*, 31-40.
- 27. M.V. Diudea, Stability of tubulenes, *Phys. Chem., Chem.Phys.*, 2003, (submitted).
- 28. Diudea, M. V.; John, P. E.; Graovac, A.; Primorac, M., Pisanski, T. Leapfrog and Related Operations on Toroidal Fullerenes. *Croat. Chem. Acta*, 2003, *76*, 153-159.
- 29. Diudea, M. V., Nanotube covering modification, *Studia Univ.* "*Babes-Bolyai*", 2003, *48*, 000-000.
- 30. Diudea, M. V., Capra- a Leapfrog related map operation, *Studia Univ.* "*Babes-Bolyai*", 2003, *48*, 000-000.

TOPO GROUP CLUJ, ROMANIA

 Mircea V. Diudea Gabriel Katona Oleg Ursu Csaba L. Nagy Monica Stefu • Crina V. Veres Mihaela Caprioara Cristina D. Moldovan Ioana Florea

