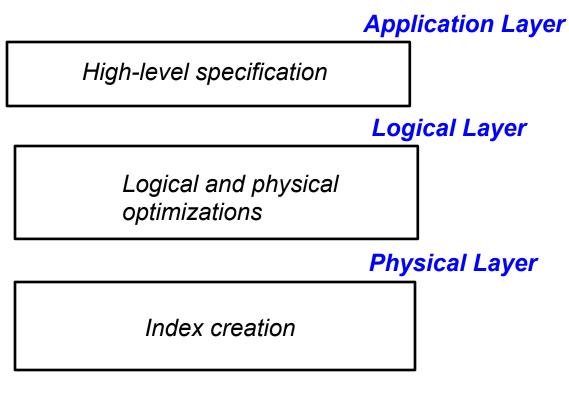
New Perspectives in Social Data Management

Sihem Amer-Yahia Research Director CNRS @ LIG

Sihem.Amer-Yahia@imag.fr

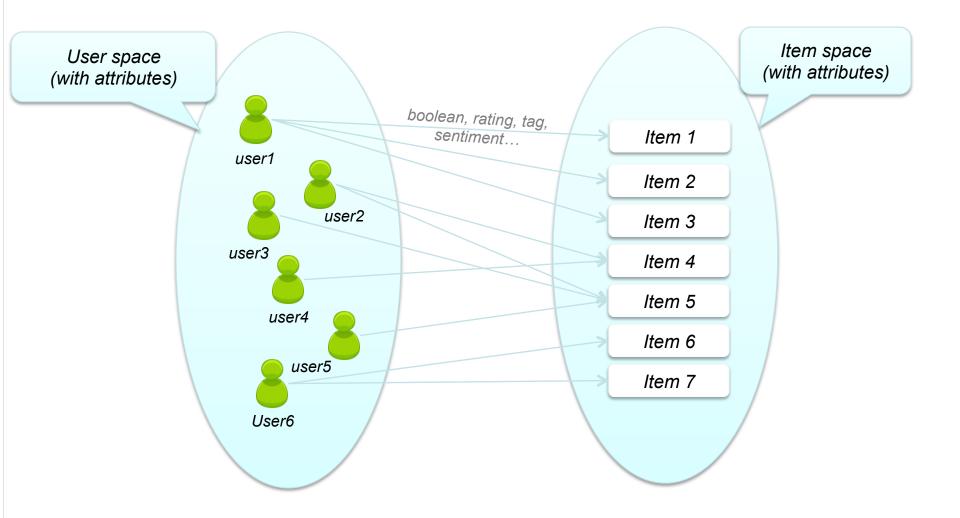
TSUKUBA University May 20th, 2014

Traditional data management stack



relational tables++ native XML backend

Collaborative data model



Let's examine a canonical social application

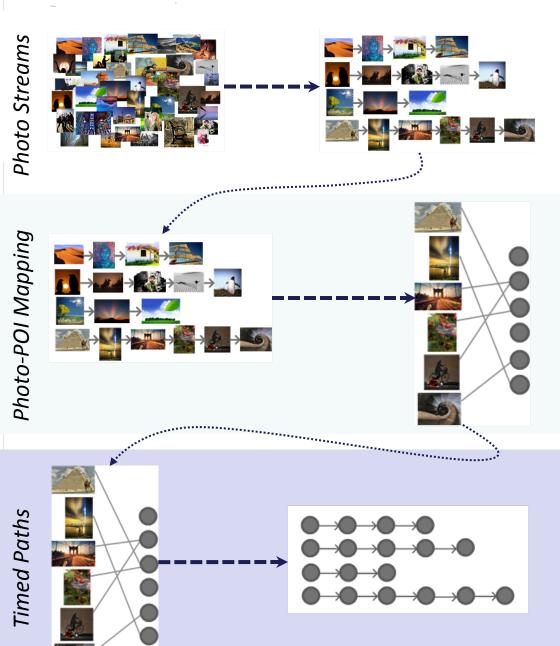
Extracting travel itineraries from Flickr

Goal: extract the itinerary of each traveler by mapping photos into Points Of Interest (POIs) and aggregate actions of many travelers into coherent queryable itineraries

Automatic construction of travel itineraries using social breadcrumbs: with Munmun De Choudhury (Arizona State University), Moran Feldman (Technion), Nadav Golbandi, Ronny Lempel (Yahoo! Research), Cong Yu (Google Research). HyperText Conference 2010

Interactive Itinerary Planning: with Senjuti Basu Roy (Univ. of Washington), Gautam Das (Univ. of Texas at Arlington), Cong Yu (Google Research). ICDE 2011

Deployed on Yahoo! Mobile



- Identify photos of a given city
- Filter out residents of a city
- Validate photo timestamps

- Extract Candidate POIs
 - Lonely Planet/Y! Travel to extract landmarks
 - Yahoo! Maps API to retrieve their geolocations
- Tag & geo-based POI association
- Photo Streams Segmentation
 - Split the stream whenever the time difference between two successive photos is "large"
- Distillation of Timed Visits
 - <POI, start time, end time>
- Construction of Timed Paths
 - A sequence of Timed Visits

Problem definition

Definitions

- Each itinerary is a timed path
- The set of timed paths implies a *weighted graph* G over POIs
- An *itinerary* is a path in the graph G
- The *value* of an itinerary is the sum of popularities of its POIs
- The *time* of an itinerary is the sum of POI visit and transit times

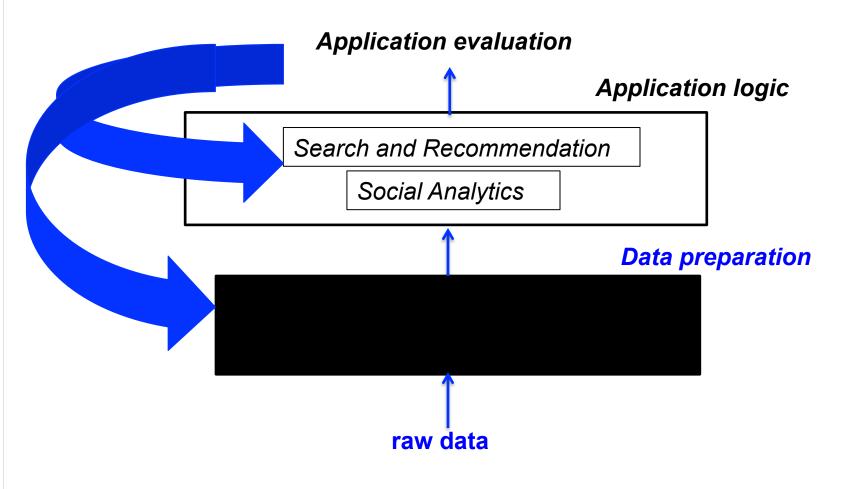
• **Problem Instance ("Orienteering")**

- Find an itinerary in G from a source POI to a target POI of budget (=time) at most B maximizing total value
- The time budget B is typically whole days
- source and target POIs provided by user (e.g. hotel)

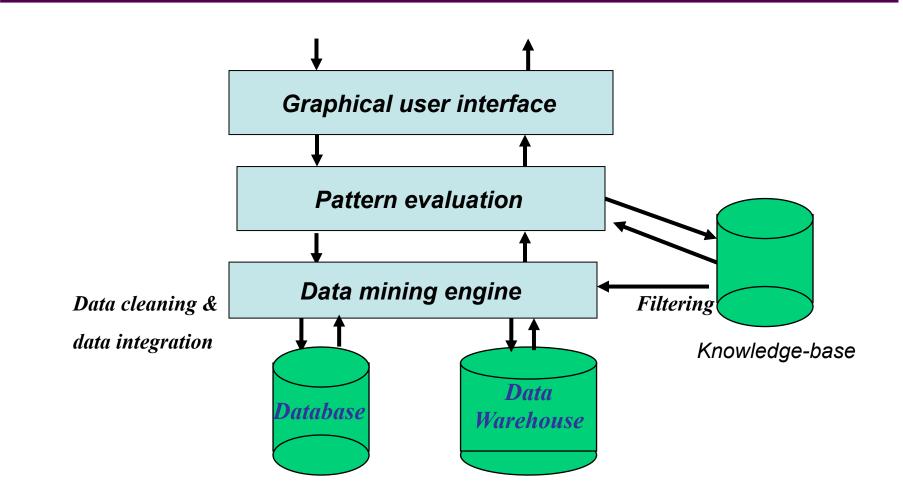
Example itinerary for NYC (single-day)

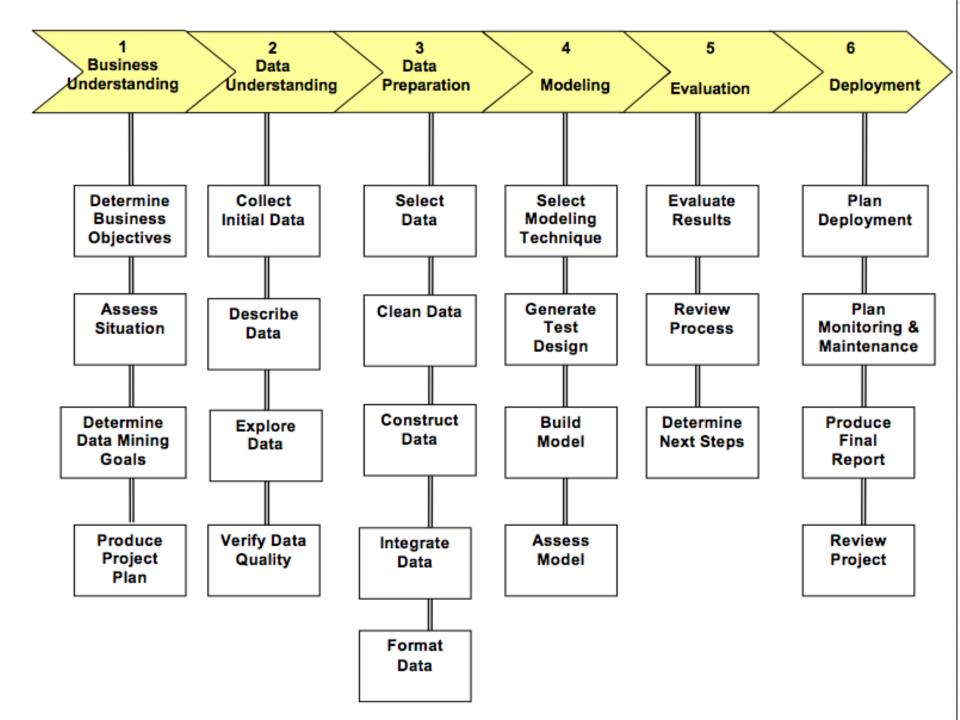
Time 09:00 : Start from ground zero Time 09:00 : Spend 27 minutes at ground zero. Time 09:27 : Transit to empire state building (estimated travel time: 52 minutes) Time 10:19 : Spend 1 hour and 13 minutes at empire state building. Time 11:32 : Transit to new york public library (estimated travel time: 15 minutes) Time 11:47 : Spend 29 minutes at new york public library. Time 12:16 : Transit to radio city music hall (estimated travel time: 24 minutes) Time 12:43 : Spend 51 minutes at radio city music hall. Time 13:34 : Transit to central park (estimated travel time: 23 minutes) Time 13:57 : Spend 40 minutes at central park. Time 14:37 : Transit to rockefeller center (estimated travel time: 33 minutes) Time 15:10 : Spend 37 minutes at rockefeller center. Time 15:47 : Transit to grand central terminal (estimated travel time: 22 minutes) Time 16:09 : Spend 27 minutes at grand central terminal. Time 16:36 : Transit to chrysler building (estimated travel time: 6 minutes) Time 16:42 : Spend 31 minutes at chrysler building. Time 17:13 : Transit to brooklyn bridge (estimated travel time: 32 minutes) Time 17:45 : Spend 36 minutes at brooklyn bridge. Time 18:21 : Transit to statue of liberty (estimated travel time: 21 minutes) Time 18:42 : Spend 42 minutes at statue of liberty. Time 19:24 : Transit to little korea (estimated travel time: 26 minutes) Time 19:50 : Spend 31 minutes at little korea. Time **20:21** : Transit to **ground zero** (estimated travel time: 38 minutes)

Social data management stack



Architecture of a typical Data Mining system





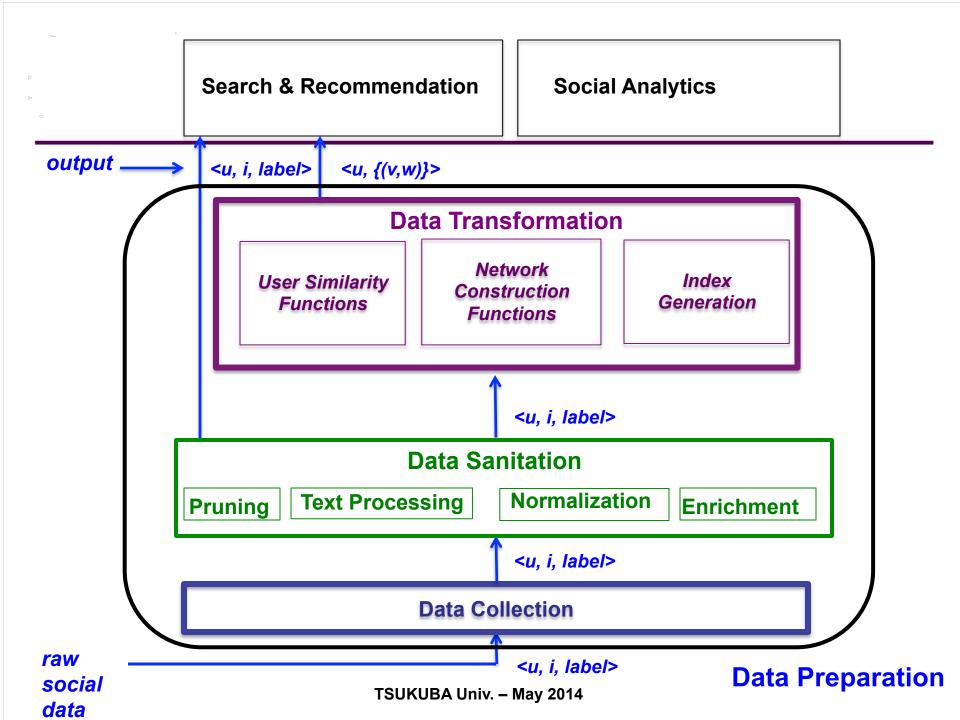
SOCLE: A framework for social data preparation

with **N. Ibrahim, C. Kamdem-Kengne, F. Uliana, M.C. Rousset** submitted for publication

- Examined typical social applications: URL recommendation in Delicious, group recommendation in MovieLens, social analytics on Twitter, itinerary extraction in Flickr
 - Data Collection
 - mapping data into <*u*,*i*,*label*> triples
 - Data Sanitation
 - **Pruning**: cut long tails of user actions, remove photos taken by residents *in delicious, removing URLs tagged with less than 5 tags reduces input data to 27% of input size*
 - Text processing: topic extraction
 - **Normalization**: of ratings— *in MovieLens, critics are more moderate than less-active reviewers*
 - **Enrichment**: POI-to-photo association, named entity extraction, twitter vocabulary expansion (*e.g., using Yahoo! Boss interface*), sentiment analysis

- Data Transformation

• from <*u*,*i*,*label*> to <*u*,*i*,*label*> and <*u*,{(*v*,*w*)}> ...



SOCLE model

- Which data model? an extensible type system
- Which storage model?

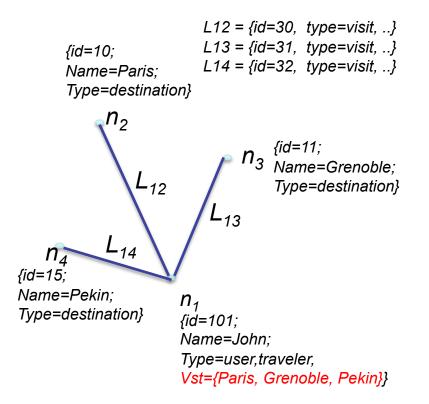
SOCLE model and algebra

with L. Lakshmanan and C. Yu

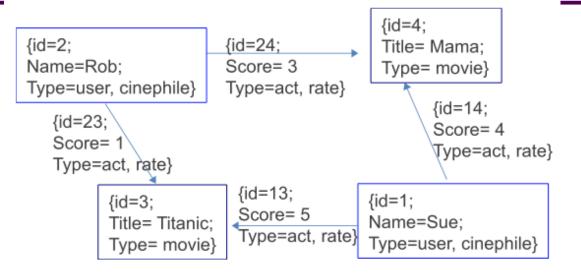
SocialScope: Enabling Information Discovery on Social Content Sites at CIDR 2009

Enrich a node with attributes -> new node type

• Algebra operator : $\gamma^{N}_{C,d,att,A}(G)$



Storage Model: native or relational++?



 $T_{users}(idu, name) = T_{movies}(idm, title) = T_{ratings}(idu, idm, rate)$

1	Sue	3	Titanic
2	Rob	4	Mama

1	3	5
1	4	4
2	3	1
2	4	3

SOCLE algebra

- Examine how existing algebras/languages for querying social data can be used for data preparation
- Properties
 - Declarativity
 - Expressivity and closure
 - Provenance
 - Invertibility

What makes SDM different from DM?

- SDM needs a different data management stack: data preparation
- In social computing, analysts do not always know what to look for
- In social computing, application output must be evaluated

Social data exploration instances

- Since analysts do not know what to look for, let's examine some social data exploration instances
 - Rating exploration

MRI: Meaningful Interpretations of collaborative Ratings with M. Das, S. Thirumuruganathan, G. Das (UT Arlington), C. Yu (Google) at VLDB 2011

Tag exploration

Who tags what? An analysis framework with M. Das, S. Thirumuruganathan, G. Das (UT Arlington), C. Yu (Google) at VLDB 2012

- Temporal exploration

Efficient sentiment correlation for Large-scale Demographics with *M. Tsytsarau and T. Palpanas (Univ. of Trento) at SIGMOD 2013*

Rating exploration

Collaborative rating model

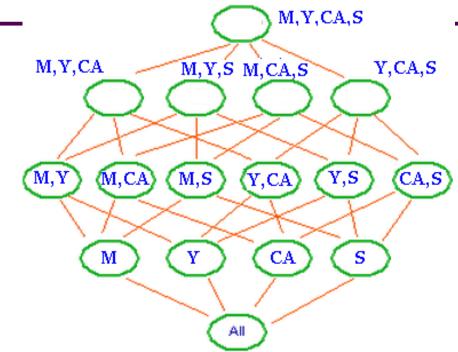
Rating tuple: <item attributes, user attributes, rating>

ID	Title	Genre	Director	Name	Gender	Location	Rating
1	Titanic	Drama	James Cameron	Amy	Female	New York	8.5
2	Schindler' s List	Drama	Steven Speilberg	John	Male	New York	7.0

Group: a set of ratings describable by a set of attribute values

- Based on data cubes in OLAP (for mining multidimensional data)

Exploration space



Each node/data cube/ cuboid in lattice is a group

Example group: Gender: Male Age: Young Location: CA Occupation: Student

Movie Movie , S:Student) Movie Movie Movie Movie Movie Movie (good " groups in the lattice that help users understand ratings effectively

Partial Rating Lattice for a Movie (M:Male, Y:Young, CA:California, S:Student)

YOU DON'T GETTO **500 MILLION** FRIE WITHOUT MAKING ΑF ENEMIES

The Social Netw PG-13 120 min - Biography	ork (<u>2010</u>) Drama - <u>1 October 2010 (USA)</u>	
	146,847 users Metascore: 95/10 160 critic 42 from Metacritic.com	
A chronicle of the founding of networking Web site. Director: David Fincher Writers: Aaron Sorkin (scre Stars: Jesse Eisenberg, And Timberlake Watch Trailer Add t	Females 22,183 Aged under 18 6,419 Males under 18 4,776 er Aged 18-29 97,085 dre Males Aged 18-29 97,085 fremales Aged 18-29 80,738 Females Aged 18-29 15,516 Aged 30-44 30,346	Average 8.1 7.9 8.5 8.6 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2

DEM: Meaningful Description Mining

• For an input item covering *R*₁ ratings, return set C of cuboids, s.t.:

Description Error: how well a cuboid average rating approximates the numerical score of each individual rating belonging to it

$$\begin{aligned} \operatorname{error}(C, R_I) &= \sum_{r \in R_I} (E_r) \\ &= \sum_{r \in R_I} \operatorname{avg}(|r.s - \operatorname{avg}_{c \in C \land r \lessdot c}(c)|) \end{aligned}$$

Coverage: percentage of ratings covered by the returned cuboids

DEM: Meaningful Description Mining

Identify groups of reviewers who consistently share similar ratings on items

DEM: Meaningful Description Mining

THEOREM 1. The decision version of the problem of meaningful description mining (DEM) is NP-Complete even for boolean databases, where each attribute ia_j in \mathcal{I}_A and each attribute ua_j in \mathcal{U}_A takes either 0 or 1.

To verify NP-completeness, we reduce the Exact 3-Set Cover problem (EC3) to the decision version of our problem. EC3 is the problem of finding an exact cover for a finite set U, where each of the subsets available for use contain exactly 3 elements.

DEM Algorithms

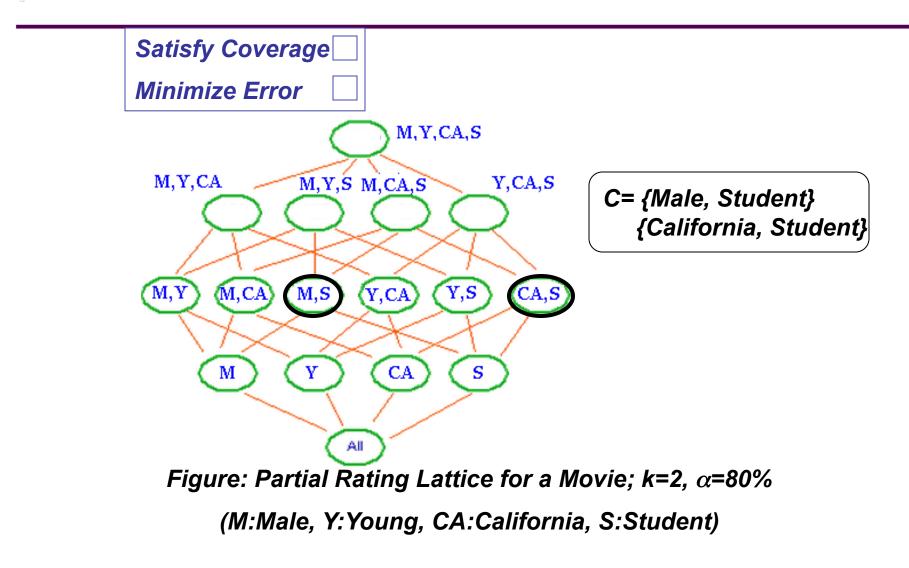
• Exact Algorithm (E-DEM)

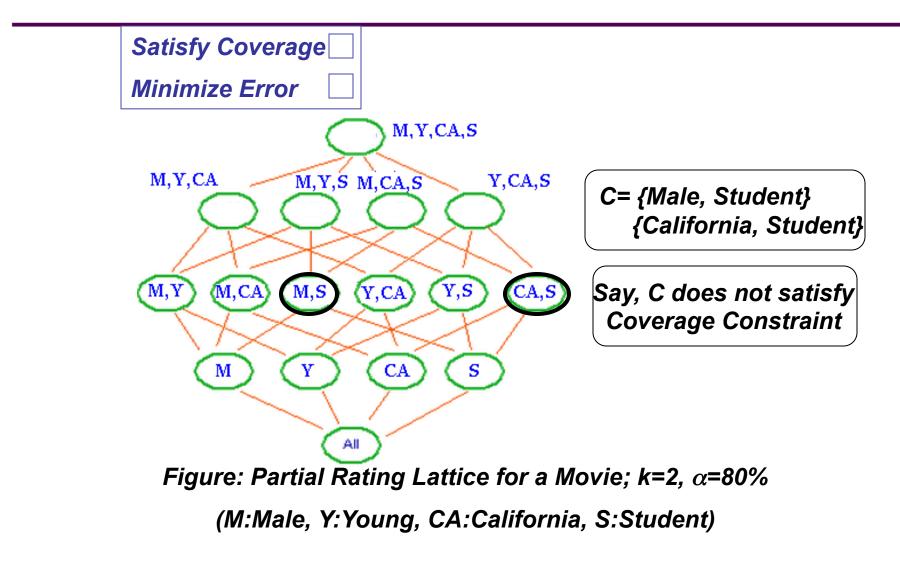
 Brute-force enumerating all possible combinations of cuboids in lattice to return the exact (i.e., optimal) set as rating descriptions

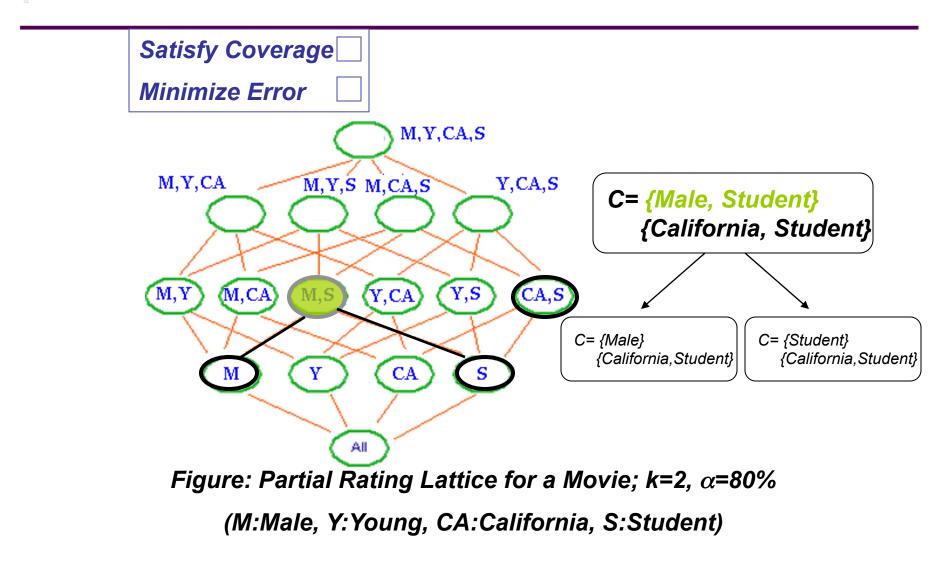
Random Restart Hill Climbing Algorithm

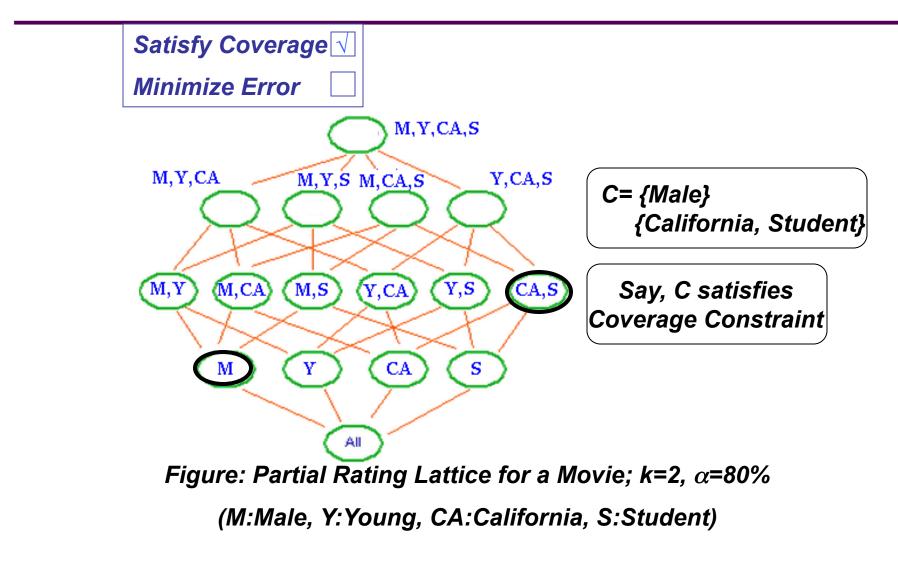
- Often fails to satisfy Coverage constraint; Large number of restarts required
- Need an algorithm that optimizes both Coverage and Description Error constraints simultaneously

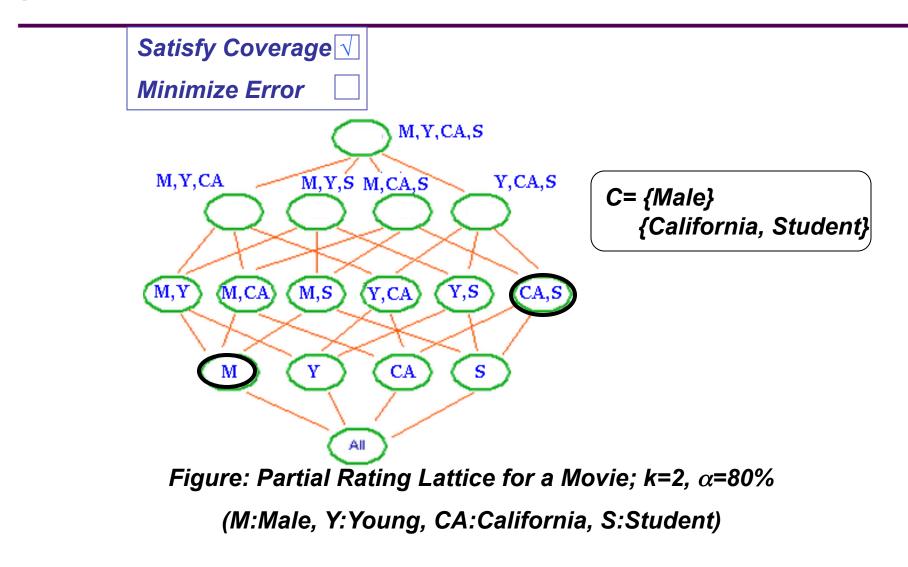
• Randomized Hill Exploration Algorithm (RHE-DEM)

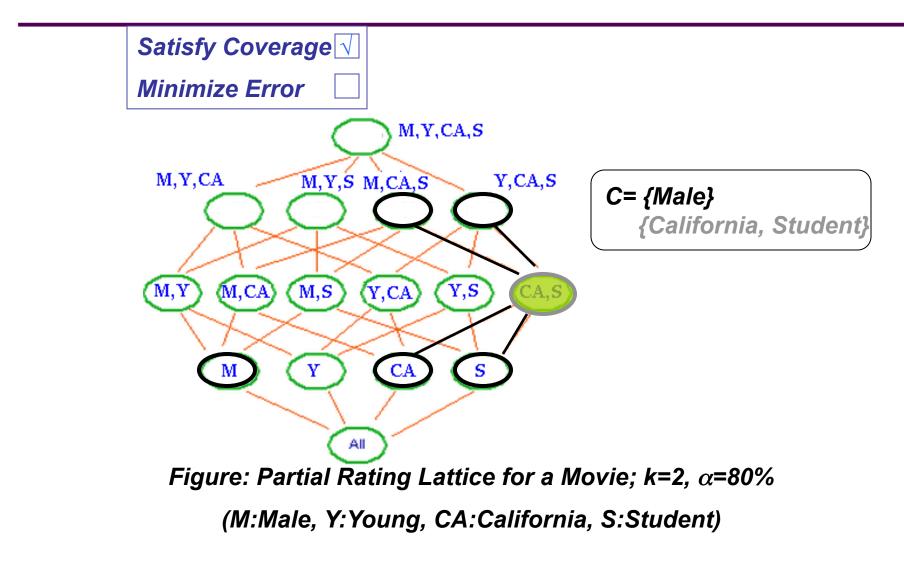


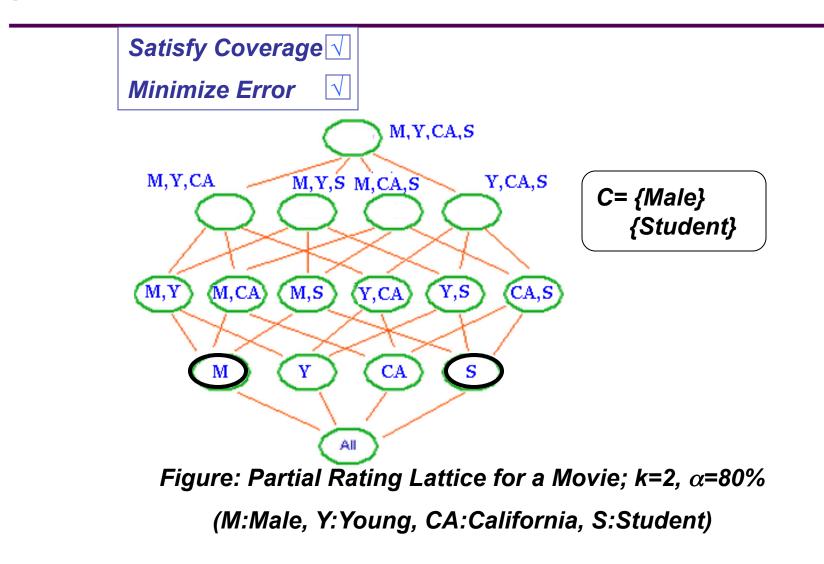












What makes SDM different from DM?

- SDM needs a different data management stack: data preparation
- In social computing, analysts do not always know what to look for
- In social computing, application output must be evaluated

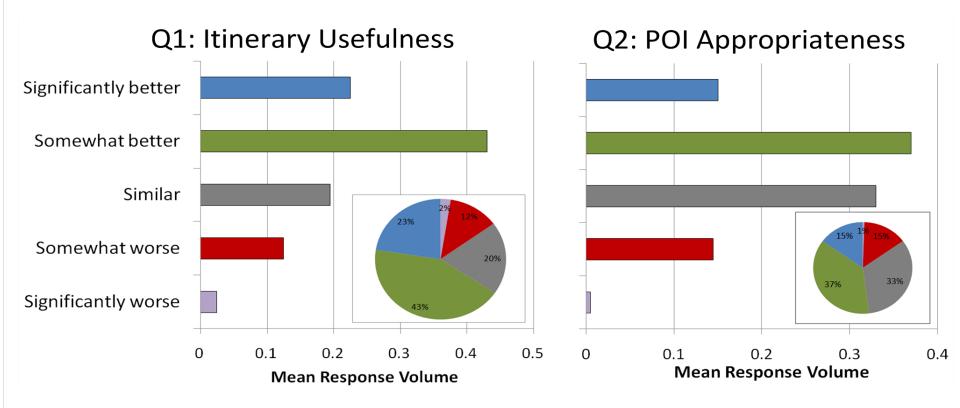
City	#POIs	#Timed Paths	Sample POIs
Barcelona	74	6,087	Museu Picasso, Plaza Reial
London	163	19,052	Buckingham Palace, Churchill Museum, Tower Bridge
New York City	100	3,991	Brooklyn Bridge, Ellis Island
Paris	114	10,651	Tour Eiffel, Musee du Louvre
San Francisco	80	12,308	Aquarium of the Bay, Golden Gate Bridge, Lombard Street

City	Ground Truth Sources
Barcelona	www.barcelona-tourist-guide.com
London	www.theoriginaltour.com
New York City	www.newyorksightseeing.com
Paris	www.carsrouges.com
San Francisco	www.allsanfranciscotours.com

Comparative evaluation

Evaluation Questions:	
 I. Overall, which one of the above two proposed itineraries you would rate higher? Itinerary 1 is significantly more useful than Itinerary 2. Itinerary 1 is somewhat more useful than Itinerary 2. Both are similar. Itinerary 2 is somewhat more useful than Itinerary 1. Itinerary 2 is significantly more useful than Itinerary 1. 	Global comparison
 II. How would you rate the set of points of interest included in the two itineraries? Itinerary 1 has significantly more appropriate points of interest than Itinerary 2. Itinerary 1 has somewhat more appropriate points of interest than Itinerary 2. Both are comparatively similar. Itinerary 2 has somewhat more appropriate points of interest than Itinerary 1. Itinerary 2 has significantly more appropriate points of interest than Itinerary 1. 	POI quality
 III. How would you rate the transit times at the points of interest in the two itineraries (from a tourist perspective)? Itinerary 1 has significantly more accurate transit times than Itinerary 2. Itinerary 1 has somewhat more accurate transit times than Itinerary 2. Both are comparatively similar. Itinerary 2 has somewhat more accurate transit times than Itinerary 1. Itinerary 2 has significantly more accurate transit times than Itinerary 1. 	Transit times
IV. Any additional comments?	

Results for side-by-side comparison



Challenge 1: Filtering expert AMT workers

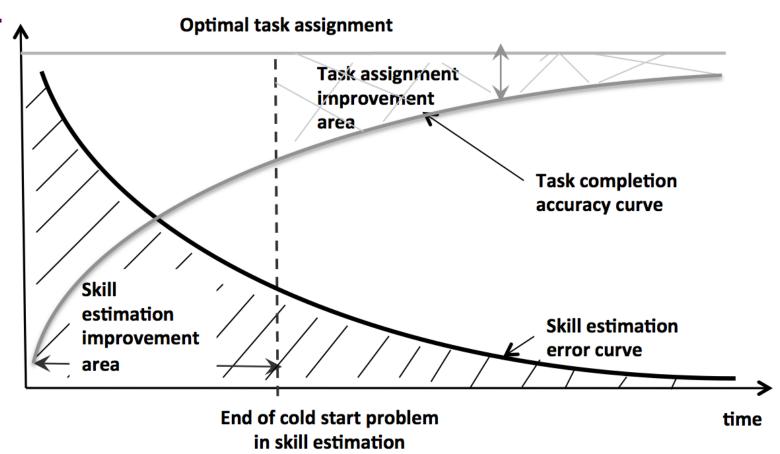
Multi-answer questions on "less-known" POIs

QUALIFICATION EVALUATION

Please choose the most suitable name of the point of interest based on your experience. This would judge your fitness to take the travel itinerary evaluation task in the next section.

- Empire State Building
 Rockefeller Center
 Chrysler Building
- Flatiron Building
 Saint Patrick's Cathedral
 Trinity Church
- Herald Square
- Washington Sq Park
- Lincoln Center

Challenge 2: How to better exploit the crowd?



Crowds, not drones: modeling human factors in crowdsourcing with S. B. Roy (U. of Washington), G. Das, S. Thirumuruganathan (UT Arlington), I. Lykourentzou (Tudor Institute and INRIA) at DBCrowd 2013

Summary

• There are three kinds of users in SDM

- End user who generates content of varying quality and demands high quality content
- Analyst (data scientist and application developer) who needs a better understanding of the underlying data and users
- Worker who helps relate to end user and evaluate content utility
- Data preparation tools and efficient social exploration would help analysts
 - new opportunities for algebraic optimizations
 - a collection of optimization problems with data-centric or analyst-centric goals
 - often a reduction of hard problems with heuristics/approximation algorithms
 - but also appropriate indexing
- Application validation could benefit from worker profiling and crowd indexing