

□ 範囲問合せ:距離が *ε*以下の部分シーケンスを検出 □ 極小値をとる X[t_s:t_e] と重複する部分シーケンスが数多く存在 ■ 2重の害

- □ 利用者に冗長な情報を与えて悩ませる
- □ 不必要な結果も報告させるために処理速度が低下
- 余分な部分シーケンスを除外

標準的な範囲問合せ + 追加条件

Report the 2nd

subsequence

Î

_の値:距	離. ‡	舌弧り	うの値	5:開	始点		
=(5.12.6	10.6	.5.13) Y=	(11.	6.9.4	1)	
. (0,12,0	,,.	,0,10	, .	、· · ·,	0,0,	•,	
$u_1 = 4$	54	110	14	38	6	7	88
$g_4 = 4$	(1)	(2)	(2)	(2)	(2)	(2)	(2)
au - 0	53	46	10	2	10	17	18
$y_3 = 9$	(1)	(2)	(2)	(2)	(4)	(4)	(4)
	37	.37	1	17	1	2	51
$y_2 = 0$	(1)	(2)	(2)	(4)	(4)	(4)	(4)
	36	1	25	1	25	36	4
$y_1 = 11$	(1)	(2)	(3)	(4)	(5)	(6)	(7)
x_t	5	12	6	10	6	5	13
t	1	2	3	4	5	6	7
	615 - CS			60.		75	

まとめ

- SPRING: DTWに基づくデータストリームのための部分シーケンスマッチング
- 高速,省メモリ
 O(*m*)の計算時間とメモリ空間,*n*に依存しない
 精度
 - □ 検出漏れがないことを保証
- 蓄積型への適用も可能
 - □ 蓄積型の検索手法と組み合わせることが可能

関連研究

- シーケンスのインデックス
 - Agrawal et al. (FODO 1993)
 - Faloutsos et al. (SIGMOD 1994)Keogh et al. (SIGMOD 2001)
 - 『Reoginetal. (SIGMOD 200
- データ圧縮(ウェーブレット変換, ランダム射影)
 - Gilbert et al. (VLDB 2001)
 - Guha et al. (VLDB 2004)
 - Dobra et al.(SIGMOD 2002)
 - Ganguly et al.(SIGMOD 2003)

関連研究

- データストリーム管理
 - Abadi et al. (VLDB Journal 2003)
- In Motwani et al. (CIDR 2003)
- Chandrasekaran et al. (CIDR 2003)

56

Cranor et al. (SIGMOD 2003)

5	結果とし [.]	τ		
	計算量			
		Naive	Naive	BRAID
			(incremental)	
	空間計算量	O(n)	O(n)	$O(\log n)$
	時間計算量	$O(n \log n)$	<i>O</i> (<i>n</i>)	<i>O</i> (1) *
_			(*)時間計算量 <i>0(1</i> ならし計算量 0	l'og n) (1)
				78

理論的な分析 – 精度	tails
 サンプリングの効果 概要:標本化定理(ナイキスト)を満たすとき, BRAIDは誤差を 生まない 詳細: 	141
以下を満たすとき, BRAIDは必ず遅延相関を 見つけることができる 0 < <i>l</i> < ^{2b}	
f_R f_R : CCFのナイキスト周波数, f_R =min (f_x, f_y) f_x, f_y : X と Y のナイキスト周波数	
	85

理論的な分析 –	- 計算量
Naive solution □ メモリ空間 O(n)	BRAID □ メモリ空間 O(log n)
□ 時間 O(n)	 統計値の更新のため の時間 O(1)
	 補間のための時間 O(log n) (アウトプットを要求さ れたとき)

まとめ	
 データストリームのための遅延相関検出 1. いつでも処理可能 2. 省メモリ ・ 統計情報の更新に 	
O(log n) のメモリ空間, O(1) の時間	
3. 高速	
□ ナイーブな実装と比べて, 40,000 倍の高速化	
4. 高精度	
□ 相対誤差の最大値は約 <mark>1%</mark>	
	103