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Abstract:  
Metadata++ is a digital library system 
that we are developing to serve the needs 
of the United States Department of 
Agriculture Forest Service, the United 
States Department of the Interior Bureau 
of Land Management, and the United 
States Department of the Interior Fish and 
Wildlife Service to support natural 
resource managers, scientists and publics 
as they analyze issues and make 
decisions.  The system provides access to 
institutional knowledge consisting of 
formal and informal agency reports and 
documents – including Environmental 
Assessments, Decision Notices, Appeal 
Decisions, specialist reports, and so forth.  
Metadata++ uses a set of hierarchically 
structured controlled vocabularies – with 
synonyms and associations – as the 
primary organizational framework.  Users 
browse the hierarchy to select search 
terms and see the search results directly in 
the context of the hierarchy.  In order to 
be useful as a digital library 
infrastructure, this hierarchy must be 
implemented in an efficient and scalable 
manner. This paper introduces the 
Metadata++ system and evaluates the 
performance of four different approaches 
to managing the hierarchy.  We present a 
novel approach that uses a common file 
system with an associated indexing 
engine to store terms as directories (with 
narrower terms as subdirectories) and 
show how we achieve both scalability and 
efficiency.   
 
Keywords:  
Information technologies for digital 
libraries; Development of digital libraries 

1 Introduction 
Resources in a digital library are typically 

described by metadata, including an indication of the 
subject(s) or topic(s) (also called keywords or terms) 
of the resource.  In this work, we are particularly 
interested in keywords that have been predefined in 
a controlled vocabulary with a hierarchical structure 
relating broader/narrower terms.  Using a controlled 
vocabulary produces more meaningful and useful 
metadata.  In addition to providing a finite set of 
keywords, a controlled vocabulary often includes a 
structured organization of the keywords – as in a 
traditional thesaurus [1] and Dewey Decimal [5].  
Most common metadata standards – such as Dublin 
Core [6] and FGDC [7] – require or permit the use 
of one or more controlled vocabularies. 

Controlled 
vocabularies are an 
essential tool within 
natural resource 
management.  Scientists, 
governing agencies, and 
natural resource 
managers use specific 
vocabularies to describe 
their work.  Our 
environmental research 
partners [3] have 
identified approximately 
twenty-eight domains of 

interest, such as location, 
hydrology, climatology, 
forestry, and planning, as 

central to the organization of documents and have 
identified, evaluated, and selected one or more 
controlled vocabularies for each domain.  Figure 1 
shows excerpts of controlled vocabularies from three 
domains.  Each controlled vocabulary organizes 
terms according to the way that specialists in a given 
domain view the concepts.  For a forester, 
“Forestry” is a primary topic, with “Agriculture” and 
“Botany” as sub-topics.  The climatologist, on the 
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other hand, considers “Air” as a primary topic, with 
“Air quality” and “Weather” as sub-topics.   

The hierarchical relationship among terms 
represents various relationships including spatial 
containment (e.g., watersheds), administrative 
jurisdiction (e.g., national forests and ranger 
districts), classification of the plant and animal 
kingdom (e.g., taxonomic description of species), or 
simple broader/narrower term (e.g., air vs. air 
quality) as shown in Figure 1.  In our model, we use 
one hierarchical relationship as an abstraction of 
these – called broader/narrower term.  Like a 
standard thesaurus [1], Metadata++ includes 
synonym and association relationships among terms, 
as well.   

As shown in Figure 2, domain specialists select 

appropriate controlled vocabularies for Metadata++ 
(upper right portion of the figure) and authors or 
local librarians supply metadata and select terms 
from the controlled vocabularies to describe 
documents within Metadata++ (left portion of the 
figure).  Users are then able to easily browse the 
controlled vocabularies and search for documents 
(shown on the lower right of the figure).  This paper 
explains how Metadata++ uses controlled 
vocabularies and evaluates four alternative 
approaches to implementing a large-scale, dynamic 
hierarchy. 

2 Using Controlled Vocabularies in 
Metadata++ 

 Controlled vocabularies provide an intuitive 
framework for cataloging and retrieving natural 
resource information.  Users may explore the 
hierarchy of controlled vocabularies and see 
documents related to the terms of interest.  Figure 3 
shows a portion of a screen shot of the Metadata++ 
application while browsing the hierarchy.  Explicit 
documents are documents that an author or librarian 
explicitly attached to the relevant term (by selecting 
the term as a keyword for the document).  For 
example, the author of the document titled “Air 
Quality Analysis and Assessment” selected the term 
“Air quality” as a keyword for that document.  
Implicit documents, on the other hand, contain one 
or more occurrences of the term, but have not been 
explicitly attached.  For example, the document 
“Monitoring for ozone injury in West Coast” 
actually contains the term “Air quality” – but the 
term was not selected as an explicit keyword. As the 
library grows, librarians may modify the hierarchy 
by adding new vocabularies or changing existing 
vocabularies.  The concept of explicit documents 
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and implicit documents allows authors, librarians, 
and users to immediately benefit from new 
vocabularies – without having to rebuild metadata 
for existing documents.  

In addition to exploring the hierarchy, the user 
may issue a search for a specific term.  The results of 
the search include documents related directly to the 
search term as well as documents related to 
descendant terms.  For example, a search for “Air” 
would include the document “Air Quality Analysis 
and Assessment,” because the term “Air quality” is a 
descendant of the term “Air”.  Instead of returning a 
ranked list of documents, Metadata++ returns 
structured search results – so the user can view the 
documents in context of the hierarchy.  Metadata++ 
uses the SUBTREE function to compute all 
descendants of a given term.    

 In addition to finding descendant terms, the user 
must also be able to find one or more terms given a 
specified string value.  For example, a novice user 
may be unfamiliar with the hierarchy and have 
difficulty finding a term of interest.  Instead of 
manually browsing the entire hierarchy to find the 
desired term, the user may type in a string – such as 
“evaporation”.  A function called FIND returns all 
terms that contain the specified string.  The FIND 
function supports two modes – exact match (which 
returns only terms that exactly match the string) and 
wildcard (which returns all terms that contain the 
string). 

3 Implementing Hierarchical 
Controlled Vocabularies 

Metadata++ uses a hierarchy of controlled 
vocabularies to provide an intuitive framework for 
building a digital library, as described above.  In 
order to be useful as a digital library framework, this 
hierarchy must be implemented in an efficient and 
scalable manner.  Specifically, the SUBTREE and 
FIND functions must be performed in real-time.  We 
must also accommodate concurrent additions and 
modifications to the controlled vocabularies.  This 
section describes four different approaches to 
implementing the hierarchy for Metadata++ using 
various combinations of database, XML, and file 
system technology.  We implemented and evaluated 
the advantages and disadvantages of each approach. 

3.1 Parent-Child Binary Relation 
The simplest approach uses a relational database 

table that represents a binary relationship between 
terms – one row in the table for each parent-child 
relationship.  This approach (illustrated in Figure 4) 
is similar to the edge relation described in [4, 8].  It 
is important to note that this approach (as well as the 
next two approaches) actually uses term identifiers 
that act as foreign keys to a separate table of terms.  
The figure shows the actual text of the term (instead 
of the term identifier) to improve readability.   

This approach is functional, but fails in terms of 
scalability and performance.  Because each parent-
child relationship is a separate row in the table, 
executing the SUBTREE function (i.e. to do a search 
or display the hierarchy to the user) requires an 
additional query for each term.  Even with relatively 
few terms (i.e. 102 terms), the performance of the 
SUBTREE function is noticeably slow.  The FIND 
function also performs slowly.  It does not take long 
to find the matching terms (exact match or wildcard) 
– the majority of the time is spent finding the 
ancestors in order to return the precise location in 
the hierarchy.  Despite poor query performance, 
adding or deleting leaf nodes is very efficient – 
simply add rows or delete rows from the relation.  
Modifying internal (non-leaf) nodes requires more 
time to correctly process the affected sub-trees.  The 
underlying database management system supports 
concurrent updates to the hierarchy. 

3.2 Breadth-first Path 
Our second implementation also uses a relational 
database, but includes a more novel approach for 
storing the hierarchy (similar to Dietz’s numbering 
scheme as described in [11]).  Instead of storing the 
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hierarchy as a set of parent-child relationships, a 
structure is used based on the breadth-first ordering 
of the tree.  Each node of the tree is stored – in 
breadth-first order – with its full path in the 
hierarchy (as illustrated in Figure 5).  (As noted 
previously, the path is actually stored using term 
identifiers, but the figure shows the term text for 
improved readability).  The hierarchy can be 
constructed using a single SQL query.  This 
approach offers a great improvement over the 
previous approach when executing the SUBTREE 
function.  The nodes in the SUBTREE can be 
determined by matching the prefix of each path – 
and the structure of the SUBTREE can be created by 
re-building the tree in breadth-first order.  This 
implementation requires only a single SQL query – 
instead of several SQL queries or expensive joins.  
The FIND function is also efficient – doing a string 
comparison on the path.  Because the relation stores 
the full path, the FIND function does not need to 
issue additional queries to determine the path (as 
with the Parent-Child approach).   

As the number of terms increases (i.e., 103 terms), 
modifications to the hierarchy take unreasonable 
amounts of time.  Whenever a new term or 
vocabulary is added to the hierarchy – or an existing 
term is moved to a new location – the entire 
hierarchy must be saved.  This process requires 
computing the breadth-first index and full path for 
each node – and saving the complete hierarchy to the 

database.  With a large number of terms, this process 
takes several minutes to complete – an obvious 
failure in performance.  Because the hierarchy must 
be saved in its entirety (after computing the breadth-
first index), this solution does not easily support 
concurrent modifications.  Deleting existing terms is 
significantly faster – because it does not require 
rebuilding the index.  When a node is deleted from 
the hierarchy – it simply requires deleting the 
appropriate row(s) from the table.   

3.3 XML BLOB 
The flexible structure of XML provides an ideal 

representation for the hierarchy of terms.  Our third 
approach for managing the hierarchy in Metadata++ 
uses a single XML document to represent the 
hierarchy, stored as text in a relational database 
(using a BLOB field).  This approach is illustrated in 
Figure 6.  (As with the previous approaches, the 
XML in the figure shows the text of the terms, but 
the actual implementation uses term identifiers).  
Other data (synonyms, associations, document 
metadata) are also stored in relational tables.  
Metadata++ uses the XML to build (and save) the 
hierarchy and uses the relational tables (i.e. SQL) to 
query the related information.   

Because the hierarchy is in XML, it is easy (using 
XPath) to execute both the SUBTREE and FIND 
functions.  One drawback of this approach is that the 
entire XML document must be retrieved from the 
database and parsed into main memory.  This 
process adds significant initial processing overhead.  
Additionally, this solution does not support 
modifications from concurrent users.  Suppose one 
user is adding terms to one portion of the hierarchy, 
while a second user is adding terms to a different 
portion of the hierarchy.  Because the entire XML 
string is treated as a single value – and the updates to 
that string are serialized by the relational database 
system – only the latest modifications are retained in 
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the database. 

3.4 NTFS and Microsoft Index Server 
Allowing concurrent access to native XML would 

be a suitable solution.  This would provide efficient 
execution of all of the necessary functions and 
support modifications from multiple users.  
Although some native XML databases do exist [10, 
15], few are actually available for use.  We found 
none that include all of the important features found 
in mature relational databases (such as concurrency).  
In order to achieve the concurrency needed to 
support multiple users and obtain the necessary 
performance requirements, we implemented a simple 
solution based on the file system (Microsoft© NTFS) 
and Microsoft Index Server© [12]. 

The hierarchy is stored and modified as folders in 
the file system as illustrated in Figure 7.  It should 
be noted that there is no concept of term identifier in 
this implementation – the folder names are the actual 
terms.  The file system is naturally hierarchical – 
and already has familiar tools for creating, editing, 

and deleting folders.  The file system also provides 
the concurrency necessary to allow multiple users to 
modify the hierarchy simultaneously.  Different 
users can work in different parts of the hierarchy and 
all of the changes will persist.  The SUBTREE 
function looks at the directory structure to find all 
descendant terms.  (It should be noted that 
scalability limitations with user interface tools – 
such as Windows Explorer© – are not necessarily 
limitations of the file system itself). 

We configured Microsoft Index Server – a full-
text indexing and search service – to catalog all of 
the file system folders defined in the hierarchy.  The 
index is searchable by folder name – providing 
support for the FIND function (both exact match and 
wildcard).  Microsoft Index Server provides an 
efficient query interface for finding folders within 
the hierarchy.   Microsoft Index Server also provides 
full-text indexing of all documents in Metadata++, 
thus enabling the identification of implicit 
documents, as described above. 

4 Performance Results 
We implemented each approach described in the 

previous section on an IBM© xSeries 220 eServer 
containing a single Intel© Pentium III (1.0 GHz) 
processor, 896 MB of RAM, and IBM ServeRAID 
storage.  The server is running Microsoft Windows© 
Server 2003 Standard Edition and Microsoft SQL 
Server© 2000 Enterprise Edition.  The fourth 
solution uses Microsoft Index Server© (included in 
the Windows Server 2003 operating system).  We 
conducted the experiments using code written and 
compiled with the Microsoft .NET Framework.  The 
hierarchy consisted of numerous controlled 
vocabularies provided by various application domain 
experts – with a combined total of more than 70,000 
terms.  Figure 8 summarizes the depth (number of 
levels) and width (number of children per node) of 
the hierarchy. 
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For each approach, we implemented and 
evaluated both the SUBTREE and FIND functions.  
We executed each function multiple times (with 
inputs and outputs varying in size and complexity) 
and averaged the execution times.  Figure 9 shows 
the results of the SUBTREE function for five 
different queries.  Figure 10 compares the 
maximum, minimum, and average SUBTREE 
execution times for each approach.   

Figure 11 shows the results of the FIND function 
for four different queries.  We executed each query 
in both modes (exact match and wildcard) and 
averaged the results.  Figure 12 compares the 

maximum, minimum, and average execution times 
for each approach.  The NTFS/IS approach is an 
order of magnitude faster (both maximum and 
average). 

As described in the previous section, each 
approach performed differently with regards to 
concurrent updates.  The Parent-Child approach 
efficiently handled updates at the leaf level (adding 
or deleting leaf nodes), but not when modifying 
entire sub-trees.  The Path approach efficiently 
handles deletes – by simply deleting the appropriate 
rows in the table – but additions require saving the 

entire hierarchy.  The XML is easily modifiable 
while in-memory, but does not support concurrent 
updates (and requires serialization with each 
modification).  The NTFS/IS approach has the 
overall best performance.  The file system natively 
supports concurrent updates to different parts of the 
directory structure, and Index Server watched for 
changes in the hierarchy and efficiently updated its 
index for each modification. 

5 Related Work 
The natural choice for representing a hierarchy is 

XML.  Recent languages such as XQuery and XPath 

make it easy and efficient to query hierarchical data 
stored in XML.  However, the large and dynamic 
nature of the Metadata++ hierarchy is not adequately 
supported by current XML tools.  A full-featured 
XML database would be an ideal solution, but the 
work in this area [10, 15] has yet to produce a native 
XML database with all of the necessary features. 

An alternative to building a native XML database 
is to map the XML to relations.  The first two 
implementations described in this paper (Parent-
Child and Path) are attempts at mapping XML-like 
data into a relational database.  The Parent-Child 
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relation is similar to the edge relation described in 
[4, 8].  LegoDB [2] takes a novel approach to 
mapping XML into relations by doing a cost-based 
evaluation of different relational representations.  
Because the hierarchy in Metadata++ is a simple tree 
of arbitrary width and depth, the LegoDB algorithm 
would also result in a simple edge-based relation.  
Metadata++ requires functionality (i.e. SUBTREE 
and FIND) that is not efficiently supported by this 
type of representation.  Our Path approach is similar 
to XML indexing techniques described in [11].  This 
technique works well for static data, but updates are 
more difficult.  The authors propose leaving gaps in 
the ordering to handle updates, but this is still not 
suitable for frequent and arbitrary updates.   

The Lightweight Directory Access Protocol 
(LDAP) [9, 13] defines basic directory services for a 
hierarchically structured set of directories.  LDAP 
allows a single conceptual directory hierarchy to be 
stored in multiple, distributed locations.  The 
Metadata++ hierarchy differs from the directory 
abstraction supported by LDAP in that Metadata++ 
terms (in the hierarchy) consist only of the word or 
phrase that makes up the term (the name of the 
directory); there is no type structure for terms and, in 
particular, there is no need to have attributes for 
terms.  Thus Metadata++ uses a much simpler 
structure for the term hierarchy with a rather narrow 
focus on the SUBTREE and FIND functions. 

6 Conclusions and Work in Progress 
Metadata++ makes several important 

contributions.  As a model for controlled 
vocabularies, Metadata++ differs from standard 
thesauri by (1) allowing terms to appear in multiple 
locations in the hierarchy, (2) allowing two terms, 
when they both appear in two different portions of 
the hierarchy, to have different narrower/broader 
term relationships, and (3) treating all terms with 

equal emphasis (i.e., there is no notion of preferred 
term).  As a digital library application, Metadata++ 
allows users to see search results directly in the 
context of the hierarchy.  That is, documents are not 
ranked in the search result; they are shown directly 
with the term or narrower term that they match.  
Metadata++ also unifies the use of terms attached 
explicitly by a librarian (for explicit documents in a 
search result) with terms found through text 
indexing techniques (for implicit documents in a 
search result).    

The focus of this paper is on implementation 
strategies for a large-scale term hierarchy.  With 
over 70,000 terms, with new terms being added and 
arranged on an ongoing basis, we had to find an 
implementation that would support the SUBTREE 
and FIND operations efficiently while still 
maintaining consistency during concurrent updates.  
The primary contribution of this paper is the 
performance analysis of a series of implementations 
that demonstrates that the directory/subdirectory 
structure of a file system, when coupled with an 
index server, provides an ideal solution for storing 
large-scale term hierarchies.  This result may be 
applicable to other applications that must manage 
large-scale hierarchical information. 

Work in progress includes extensive user testing, 
with a goal of deploying Metadata++ for use in 
natural resource management, and formalizing the 
Metadata++ model.  We will also continue our work 
in integrating Metadata++ with geographic 
information systems [14]. 
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